
Datica Research, LLC

Release 1.0: 20 March 2025
White Paper

WHITE PAPER

Scaling Confidential Computing for Enterprise
Applications: Challenges and Opportunities

John L. Manferdelli(NAE), Paul E. England (NAE) and Tho H. Nguyen∗
∗To whom correspondence should be addressed: helloDR@daticaresearch.com

Abstract

Confidential Computing (CC) has gained popularity in recent years to secure data and computation, especially for
sensitive applications in the cloud. Compared with other security approaches, CC demonstrates distinct advantages such
as delivering high security with minimal performance impact. However, CC is not yet a broadly accessible solution and
more work is needed to scale its implementation beyond bespoke applications. Future work to address accessibility and
scalability include abstraction frameworks to hide hardware and cryptographic complexities, new tools and middleware
to support large scale deployments, and platforms with built-in CC capabilities for general purpose applications. Datica
Research principals, who were early contributors that led the invention of Confidential Computing, are working on scaling
CC to meet today’s enterprise security challenges.

Key words: confidential computing, trusted execution environment, cryptography, privacy-preserving, cybersecurity

1. Confidential Computing Fundamentals

Since the 1990s, CPU and platform vendors have added

specialized security capabilities for enhanced compute and

data security. This has included key stores and cryptographic

co-processors, secure boot, and facilities for Trusted and

Confidential Computing. The excitement for Confidential

Computing is understandable due to its many advantages over

related security approaches.

Confidential Computing is a mechanism that provides isolation,

measurement, secret storage and attestation based on hardware

primitives - these are known as the “Foundation Properties”

of CC. These capabilities allow a well-written1 program to

guarantee adherence to operational (e.g., security and safety)

policies as well as ensuring the confidentiality and integrity of

1 A program with no exploitable vulnerabilities that can

cause unintended behavior such as unauthorized disclosure
of information to an unauthorized party, the corruption or

unauthorized modification of a program or information affecting
processing, or corruption of the program by introducing malware
or other adversarial artifacts that can adversely affect the

program. Implicitly, “unauthorized” actions or access means
actions not expressly authorized under a policy set forth as the
basis of the programs processing “contract” between or among
users of the program and those who rely on it.

© Datica Research. All rights reserved.

1

email:email-id.com


2 Manferdelli et al.

the program and the data it uses. This protection is reliable in

the face of attacks by other programs running on the computer,

communications over a network and even the malicious actions

of the administrator or owner of the computer on which the

program runs or the networks it uses.

Confidential computing derives security from two foundations:

Cryptography, and, immutable hardware behavior.

1.1 On Cryptography

The cryptographic primitives employed by Confidential

Computing are the common ones widely used2.

Cryptographic hashes: Confidential computing elevates computer

programs to first-class security principals for access control

and authentication. To enable this security, programs must

be reliably identified. The most common authentication

mechanism is the cryptographic hash of a program and its

configuration. Cryptographic hashes are one way functions

which have the property that given an arbitrary sequence of

bits, B. It is easy for anyone to compute the hash, denoted as

h(B) but it is infeasible, even given access to vast computing

resources, to find a different string, B’, such that h(B) = h(B’).

Hashes are useful because they provide a short ”fingerprint” for

large data files and programs.

Symmetric ciphers: These are public algorithms denoted by a

pair of functions, EK(M) and DK(C) that allow two parties

(often abstractly called Alice and Bob) who share knowledge

of a secret key, K, (whose size is about 256 bits, usually)

to communicate over public channels which can be observed

by adversaries so that only they can “read” the protected

information. For a message, M, C= EK(M), is called the

ciphertext and DK(EK(M))=M. Symmetric ciphers are very

fast and can process huge messages in microseconds. Again,

without knowledge of the key K, even given access to vast

computing resources, no unauthorized party can discover the

encrypted text or any part of it.

Asymmetric ciphers: Asymmetric (or public key) ciphers

consist of a pair of functions (EP (M), DS(C)). Again,

DS(EP (M))= EP (DS(M))=M. P is called a public key and

S is called the secret or private key. However, in asymmetric

ciphers, while only the owner knows the secret key S, anyone

can know the public key P. This means anyone can encrypt

messages that only the holder of the private key, S, can decrypt.

Even with knowledge of P and the algorithm, and even given

access to vast computing resources, S is not computable. And

of course, without knowledge of S, even given access to vast

computing resources, without S, no one can decrypt EP (M).

Asymmetric ciphers are most commonly used in two ways: (a)

to allow Alice to share a secret key with Bob, and (b) to allow

Bob to digitally ”sign” a message that Alice can verify. In other

words, cryptographic hashes and asymmetric ciphers can be

employed to produce unforgeable signatures that can be verified

by anyone. This is done as follows. Suppose one wished to sign

an Agreement, A, consisting of a sequence of bytes (like a word

document). The signed computes DS(h(A)). Given A, and P,

anyone can verify whether EP (DS(h(A))) = h(A) but only the

secret key holder can compute DS(h(A)). Asymmetric ciphers

2 These primitives are described in great detail in texts,
standards, research papers and internet sources, such as

Wikipedia.

can be used to “authenticate” or verify the identity of a secret

key holder (provided you know for certain that the public key,

P, is associated with the entity you wish to authenticate) by

issuing a random challenge, M. The secret key holder then

computes DS(M) and the person issuing the challenge can

verify that EP (DS(M)) = M. Asymmetric ciphers can also

be used to encapsulate symmetric keys, anyone can generate

a key K and send it to the secret keyholder by computing and

transmitting EP (K). However, usually, the most useful form of

key transmission is “authenticated key exchange” where Alice

and Bob exchange symmetric keys, using asymmetric ciphers,

confidentially, with the additional assurance that Alice can be

sure Bob is the only other party who got the key and Bob is sure

that Alice is the only party that got the secret key. We won’t

describe the construction of authenticated key exchange using

asymmetric ciphers but they are well known. Cryptographic

hashes in conjunction with symmetric ciphers can not only

ensure the confidentiality of a message but also its integrity

so that even an adversary that can modify or add bits during

the transmission of a message can deceive the rightful receiver

of the message into accepting any message or part of a message

other than from the rightful transmitter.

The primitives above and the artful use of them provided,

with the hardware described below, everything needed for

confidential computing.

1.2 Immutable Hardware Behavior

Confidential computing hardware platforms usually uses the

cryptographic primitives to provide the Foundation Properties

as follows.

1. When the program is read into main memory, the hardware

(atomically) computes its cryptographic hash (we’ll call this

the program measurement, mP )3. It then isolates the program

using the memory management unit and protect against various

hardware attacks, often by encrypting the program memory and

registers with a unique integrity and confidentially-protecting

key. No other program or even the OS has access to these keys.

While the program runs, the measurement, mP , is unforgeably

associated with the program by the hardware.4

2. The hardware can provide secret storage by using a

confidentiality and integrity protecting key, K, that only the

hardware knows. A program can ask the hardware to save a

secret, S, the hardware encrypts and integrity protects the bit

string (S, mP ) perhaps with a nonce and returns the encrypted

bits, C, to the program. If the program needs to recover S (say,

after it restarts), it requests the secret from the hardware by

supplying C. The hardware decrypts and integrity verifies the

decrypted string (S, mP ). If mP is the measurement of the

running program, the hardware returns S. This mechanism is

usually called sealing and is commonly used for offline data

storage.

3. Finally, there is attestation. An attestation is a message,

M, unforgeably linked to the program measurement, mP ,

3 The hardware may also add any program affecting data and
properties when computing the hash to guarantee these as well.
4 Many platforms - particularly smaller systems - perform

program measurements, but do not provide isolation for
mutually distrustful modules. Such systems can be treated
identically to larger systems, but typically can only run a single
CC program.



Scaling confidential computing 3

produced by the hardware for which a remote party can securely

verify that M comes from the program mP while isolated

and protected. The easiest way to do this is to equip the

hardware with a public, private key pair (P, S) accompanied

by unforgeable evidence that P is known only to this particular

hardware. The attestation is then the statement, signed by S,

“The program, mP , isolated by my protection, said M.” The

common use of attestation is to securely introduce a program

public key, Pprogram, whose secret key Sprogram, is known

only to the program and accessible only when protected. The

meaning of that attestation is “The program with measurement,

mP , says that Pprogram is its authentication key and only

the program knows the key Sprogram. The upshot is that

once this attestation is verified, “relying parties” (the parties

to whom the attestation is sent), can be sure that any

entity proving possession of Sprogram, must be the program

while protected. (Proof of possession is another simple set of

protocols using asymmetric keys). Two programs program1 and

program2, once proof of possession is established of their keys

Sprogram1 and Sprogram2, Pprogram1 and Pprogram2 can be

used to establish authenticated, encrypted, integrity protected

channels between them (much like “mutually authenticated

TLS channels”).

As a result of all this, once you know that program1 and

program2 are well written and you know exactly how they

process information, you can compute their measurements,

mprogram1 and mprogram2 and use the primitives above to

guarantee their isolation, the confidentiality and integrity of

the data they use and the integrity of their program flow.

This protection holds even if the program is running on

a machine you don’t control (say in a cloud data center),

even if there is malware on those machines and even if the

administrator (the “root” on that machine) is malicious. This

is a rather strong, principled security guarantee that provides

rather comprehensive and remotely verifiable assurance. It also

simplifies and secures key management. Finally, programs so

protected can be produced by any program written in any

language by people who understand the “API” of the program.

Further, except for the nearly negligible time to set up and

save program keys, these programs can run (depending on the

platform) at “full CPU speed.”

2. A Comparison Across Different Secure
Computation Approaches

There are several related security techniques with different

protections and capabilities than the ones Confidential

Computing offers:

Differential Privacy (DP) is a technique that limits disclosure

of individual data items by responding only to large aggregate

queries and “adding noise.” It is not intended to protect the

storage or query processing of the data only the output of

aggregate queries. Good application: Census data.

Fully Homomorphic Encryption (FHE): Once data is

encrypted (which must happen at a trusted location), the

computations can be distributed to untrusted machines and

processing occurs on encrypted data. Increases computation

time by very large ratios that grow with size of computed data.

Multi-party Computation (MPC): Once data is encrypted

(which must happen at a trusted location), computations can

be distributed to untrusted machined and processing occurs on

encrypted data. Computations are limited and require custom

programming by experts but computation time although much

higher is much lower than with Fully Homomorphic Encryption.

Generally protects small bespoke applications where limited

collusion provides protection.

The common theme among these approaches is that they rely

strictly on algorithms (and often cryptography) to provision the

security properties5. This results in rather severe restrictions on

their applicability and scalability. MPC and FHE are generally

only effective as custom solutions for small applications. And

DP is only effective for large databases to prevent cross

referencing (and DP algorithms must coordinate with the

analytics such that the noise can be effectively filtered out).

Unlike algorithmic approaches, Confidential Computing

leverages both crytographic and hardware primitives to

provision secure enclaves where it’s unnecessary to inject

noise into the data (compared to DP), and no need to

encrypt the data and algorithms beforehand (compared to

5 Recent hardware progress aims accelerate the implementation

of these approaches, e.g., for FHE, but they hardware is not
fundamental to their security model.

Table 1. Comparison between secure computation approaches.

Approach MPC FHME DP CC

Security model

Protect encrypted

data during

computation on

redundant platforms

that cooperate

Protect encrypted

data during

computation

Prevent query from

returning individual

data

Protect data and

computation from

inception to storage

and use

Threat model
Protects data after

encryption

Protects data after

encryption

Protects individual

data items in large

aggregate queries.

Does not protect from

insiders and malware

Protects granular

data, no restriction on

data size or program

size

Performance impact High Very high Moderate Negligible

Scalability
Small custom

applications

Small custom

applications

Aggregate (large) DB

queries only
Any application

Iplementation Complexity Very high Very high Moderate Very low



4 Manferdelli et al.

MPC and FHE)6. This means existing applications need not

be significantly rewritten to leverage Confidential Computing7,

and it is also very possible to scale confidential computing

to support large-scale enterprise systems or a general purpose

application platform.

A straightforward comparison between different secure

computation approaches is given in Table 1.

Here are some applications in reach for Confidential

Computing:

• Cloud security enablement

• Hardware secure module

• Secure Key Store and token generation

• Standard platform components (storage, time, IAM)

• Secure shared database access

• Secure privacy preserving service enablement

• Secure Motion planning as a service

• Secure collaborative machine learning

• Secure Auctions

• Secure infrastructure management

• Secure Kubernetes container management (via secure

Spiffie/Spire)

• gRpc and Zero Trust

• Secure Document sharing

• Secure “cradle to grave” data provenance

• Edge sensor collection

• Enabling common platforms for sensitive edge services

• Caching services and the “extended internet”

There is currently no technology to convert a large, vulnerable

program, Such as MS Word, into a secure program that

can be unconditionally protected by CC, or any other secure

computation approaches. This overcome this gap, several

challenges must be addressed to scale Confidential Computing.

A note on ”Better Together”: Of course, confidential

computing can be combined with these other techniques. For

example, CC can protect data and storage for MPC and

FHME when initially encrypted. Similarly, CC can protect the

data and processing in DP during the query processing and

before query response. MPC and FHME can be used with CC

for extremely sensitive computations thus adding resilience to

single points of hardware compromise (Byzantine agreement

and key splitting can also be used to achieve this result).

2. Challenges to Scaling Confidential Computing

In principle, Confidential Computing can be used to protect

any program. The hidden limitation is that the basis of

protection is the correctness of the program. Additionally,

while confidential computing protects programs from reading

or modifying protected memory, it does not stop a malformed

input from causing the program to misbehave or reveal secrets.

I.e., while confidential computing stops attacks ”from the

bottom” - e.g. from the OS or other programs running on the

6 It is very much possible to encrypt data and algorithms before

they’re passed into the enclave to enhance security. The key
point here is that the algorithms need not compute on encrypted

data inside the enclave.
7 This burden is further reduced by the Certifier Framework,
discussed in Section 3.1.

platform, it does not help with the much more common security

challenge of network or other attacks. And finally, as programs

grow in size it is time consuming to build enough components

safely enough to meet CC’s full value.

To date, Confidential computing has been used successfully the

build small programs such as soft Hardware Secure Modules

and Key repositories. These are small enough that developing

the underlying program safely enough is easy. Access control

programs can also be built. In fact, enough infrastructure can

be built to support analysis of shared data while protecting the

right of each individual data owner.

Analysis of secure components can be time-consuming but a

general problem is ensuring the secure composition of CC

protected components as well as CC protected components

with non-CC protected components.

In addition, analyzing components and their composition,

generally requires complete knowledge of the program (i.e.-all

source code). Proprietary programs must be analyzed under a

protection regime that meets the needs of the IP owner.

For Confidential Computing to support enterprise applications,

these fundamental gaps must be addressed.

3. Future Research and Development Directions

Future R&D for Confidential Computing is informed by

where it is needed8. First, bespoke applications collecting

and handling sensitive data need to integrate CC security

capabilities into its data lifecycle. In order to do so, the

difficulties of cryptography and hardware behaviors (and

differences across hardware platforms) need to be abstracted

away. Second, large scale and cloud systems require a host of

middleware and tools to scale CC security capabilities to meet

their needs. And finally, ”general purpose” applications wishing

to benefit from CC-enabled security but does not want to have

to integrate CC into its stack can deploy on a CC-enabled

platform.

One barrier to using CC, has been the great variety of

platforms and the mountain of “standard code” needed by

all CC applications as well as a mechanism to manage CC

applications. This has been solved to a large extent by The

Certifier Framework for Confidential Computing which provides

all this as well as a standard abstract API so programs can

be written and run on any platform. There are not enough

Confidential Computing hardware platforms available and there

is a dearth of client platforms in particular. Datica is working

to remedy this.

As pointed out above, in addition to the Certifier Framework

more secure middleware must be developed to cut program

development time and secure composition tools must be

developed along with safe access control laguages to encourage

interoperability. One promise of CC is to provide “birth to

death” protection of data. Development of IoT CC capability

is required for this. In addition, protection of IoT and Cyber

Physical components protected by CC opens a huge vista for

secure data collaboration (a swarm of cars) as well as protecting

factory floor and outsourced factory floor support service.

8 Multiple directions for CC R&D is possible because of its

flexibility and scalability potential as discussed earlier.



Scaling confidential computing 5

Finally, Datica Research (and we hope others) are building a set

of “off the shelf” applications like secure messaging but there

needs to be many more of these.

4. Conclusions

By building on foundational properties derived from cryptography

and hardware-enabled, immutable security primitives Confidential

Computing is able to secure workflow, deliver secure platforms,

and provide tools and services to secure large scale and

cloud applications. These flexibility scalability capabilities

position CC to be the most promising technology for protecting

computation and data; and, in combination with other secure

computation approaches CC can truly meet today’s enterprise

security needs. Datica Research, led by researchers who

pioneered the early work inventing Confidential Computing,

is vigorously pursuing research efforts to build and prove CC

properties at scale.

Authors

John L. Manferdelli, PhD (NAE) is a principal at Datica

Research. He is also Chairman of the National Academy of

Sciences’ Forum on Cyber Resilience, Chair of the National

Academies’ consensus study on cyber hard problems, and

member of the Defense Science Board (DSB).

Before joining Datica, John worked at VMWare, where he

was the principal designer (alongside Ye Li) of the Certifier

Framework for Confidential Computing. His prior roles include

Director for Production Security Development at Google and

Senior Principal Engineer at Intel Corporation, where he co-led

the Intel Science and Technology Center for Secure Computing

at UC Berkeley (with David Wagner). He also held leadership

roles at Microsoft, where he worked on Trustworthy Computing

(with Paul England), and headed up Microsoft Security. Before

that, he co-founded Natural Language Incorporated (with

Jerrold Ginsparg), which was later acquired by Microsoft.

John’s journey through computing included Bell Labs, LLNL,

and TRW. Along the way, he also found time to teach

mathematics and computer science at Stevens Institute of

Technology, University of Washington, and UC Berkeley. He

was also a member of the Information Science and Technology

advisory group at DARPA.

John was elected to the National Academy of Engineering

(NAE) for his pioneering work advancing Confidential

Computing.

John’s professional interests include cryptography and cryptographic

mathematics, combinatorial mathematics, operating systems,

and computer security. He is author of many papers on

computer security, high performance computing, cryptography,

quantum computing, computer security and signal processing

and has been awarded many patents. He is also a licensed Radio

Amateur (AI6IT).

John has a bachelor’s degree in physics from Cooper Union

for the Advancement of Science and Art, and a Ph.D. in

mathematics from the University of California, Berkeley..

Paul E. England, PhD (NAE) is a Principal at Datica

Research. Paul led or contributed to most of the computer

industry’s hardware-based security innovations of the last 25

years. Most notable is the field of Trusted Computing:

a combination of novel cryptographic operations together

with hardware/software environments for secure computation.

Trusted Computing primitives are now a feature of most

modern computer systems. These features are the security

foundation for Microsoft (and other) clouds and are increasingly

used for edge devices. In 2018 Paul was elected to the National

Academy of Engineering (NAE) for this work.

Paul has worked closely with industry and standards groups to

deliver the necessary hardware security building blocks. Paul

led the development of the TPM specification and reference

implementation, as well as co-designing many of the silicon

security features we use today (TrustZone, various kinds of

secure and authenticated boot, SGX-precursors, etc.) At

Microsoft, he worked closely with business groups to develop

features based on the hardware innovations, including a 4-

year stint in Windows where Paul was the lead architect for

Microsoft’s disk encryption technology.

More recently, Paul led a government-industry initiative to

improve the resilience and recoverability of computer systems in

the face of cyber-attack as well as a minimal root-of-trust called

DICE, which is becoming standard in all programmable devices:

everything CPUs, microcontrollers and storage controllers,

to full systems like GPUs, smart-NICs, and networking

equipment.

Paul serves on several National Academy committees charged

with advising on United States cyber-security policies and

has advised other European countries. Paul has a Ph.D. in

condensed matter physics from Imperial College of Science and

Technology.

Tho H. Nguyen, PhD is a Principal at Datica Research.

Tho started his career building data centers. With only a few

wins under his belt, Tho left industry and joined the National

Science Foundation. There, he helped shape the Cyber Physical

Systems program in its early days. Tho returned to academia

and joined the University of Virginia as a Senior Scientist in the

Computer Science Department. There, he managed research in

processing-in-memory and worked with the VP for IT to build

out UVA Research Computing.

Since 2021 Tho has been a Senior Program Officer at

the National Academies of Sciences, Engineering, and

Medicine. There, he directs the Forum on Cyber Resilience,

and serves as Study Director for numerous consensus studies.

Topics he works on include post-exascale computing, cyber

resiliency hard problems, software assurance and nimbleness,

machine learning safety, Digital Twins, and semiconductor

security - all of which means he’s highly effective at getting

people to agree on things.

Tho has a PhD (and an MS, a BS, and a BA) from the

University of Washington in Electrical Engineering - except for

the BA, which was for Applied and Computational Math (he

can’t really recall how that happened).


	1. Confidential Computing Fundamentals
	1.1 On Cryptography
	1.2 Immutable Hardware Behavior

	2. A Comparison Across Different Secure Computation Approaches
	2. Challenges to Scaling Confidential Computing
	3. Future Research and Development Directions
	4. Conclusions
	Authors

